

DATOS BÁSICOS DE LA GUÍA DOCENTE:

Materia:	ESTRUCTURAS I		
Identificador:	32178		
Titulación:	GRADUADO EN ARQUITECTURA (CA). PLAN 2009 (BOE 21/03/2015)		
Módulo:	TÉCNICO		
Tipo:	OBLIGATORIA		
Curso:	2	Periodo lectivo:	Primer Cuatrimestre
Créditos:	3	Horas totales:	75
Actividades Presenciales:	34	Trabajo Autónomo:	41
Idioma Principal:	Castellano	Idioma Secundario:	Inglés
Profesor:	CEBREIRO CABARCOS, JORGE (T)	Correo electrónico:	jcebreiro@usj.es

PRESENTACIÓN:

Con esta asignatura adquirirá el alumno los conocimientos fundamentales de la mecánica de sólidos y el comportamiento elástico, plástico y resistente de los elementos de una estructura. Se incluyen en ella por tanto los conocimientos temáticos de la Teoría de la Elasticidad y la Resistencia de Materiales.

El objetivo principal de la asignatura es lograr que el alumno calcule y entienda las leyes de esfuerzos a los que queda sometida una estructura en función de las solicitaciones, así como la deformada de sus elementos. Podrá, asimismo, dimensionar elementos estructurales sencillos. La asignatura capacitará al alumno para comprender el funcionamiento de los distintos elementos estructurales, lo que le permitirá analizar las diferentes tipologías de estructuras.

La asignatura constituye el primer contacto del alumno con la Mecánica de Medios Continuos y con las disciplinas tecnológicas que de ella se derivan. Constituye por ello un paso previo fundamental para la comprensión de las asignaturas relativas al estudio de las estructuras que siguen a ésta en los cursos posteriores.

COMPETENCIAS PROFESIONALES A DESARROLLAR EN LA MATERIA:

Competencias Generales de la	G02	Capacidad de resolución de problemas y toma de decisiones a lo largo de la vida, y de elegir itinerarios formativos y profesionales de forma autónoma.
titulación	G03	Capacidad el aprendizaje autónomo y la auto-crítica.
	G04	Capacidad de aplicar los conocimientos aprendidos a la práctica y en las destrezas que se pueden transferir al ámbito del trabajo.
	G06	Demostrar habilidad crítica y analítica sobre los enfoques convencionales de la disciplina.
Competencias Específicas de la	E03	Conocimiento aplicado de: El cálculo numérico, la geometría analítica y diferencial y los métodos algebraicos.
titulación	E04	Aptitud para concebir, calcular, diseñar, integrar en edificios y conjuntos urbanos y ejecutar: Estructuras de edificación (T); Sistemas de división interior, carpintería, escaleras y demás obra acabada (T); Sistemas de cerramiento, cubierta y demás obra gruesa (T); Soluciones de cimentación (T); Instalaciones de suministro, tratamiento y evacuación de aguas, de calefacción y de climatización (T)
Profesiones reguladas	P06	Capacidad de comprender la profesión de arquitecto y su función en la sociedad, en particular elaborando proyectos que tengan en cuenta los factores sociales.
	P08	Comprensión de los problemas de la concepción estructural, de construcción y de ingeniería vinculados con los proyectos de edificios.
	P09	Conocimiento adecuado de los problemas físicos y de las distintas tecnologías, así como de la función de los edificios, de forma que se dote a éstos de condiciones internas de comodidad y de protección de los factores climáticos.
	P10	Capacidad de concepción para satisfacer los requisitos de los usuarios del edificio respetando los límites impuestos por los factores presupuestarios y la normativa sobre construcción.
Resultados de Aprendizaje	R01	Resolver problemas estructurales aplicando los fundamentos de la estática y de la resistencia de materiales.
	R02	Entender el concepto de tracción, compresión y flexión, así como su acción sobre los sistemas estructurales empleados en edificación.
	R03	Entender los conceptos de esfuerzo cortante y axil momento flector y torsor, así como su acción sobre los sistemas estructurales empleados en edificación

FI-010 - 1 - Rev.003

	R04	Resolver problemas estructurales referidos al grado de estaticidad de la estructura y comprender y saber emplear los sistemas de nudos y vínculos estructurales que pueden darse entre los distintos elementos que constituyen una estructura.
	R05	Obtener, predecir y analizar cualitativa y cuantitativamente diagramas de esfuerzos cortantes y de momentos flectores.
	R06	$Calcular\ las\ deformaciones\ de\ elementos\ estructurales\ sometidos\ a\ cargas\ sencillas\ utilizando\ diferentes\ m\'etodos.$

REQUISITOS PREVIOS:

Los alumnos deberán tener un nivel de conocimientos de física y matemáticas al nivel impartido en el curso anterior para poder abordar con garantías los conocimientos relativos al presente curso. Además contamos con su buena disposición para trabajar de manera guiada pero autónoma los aspectos de dichos conocimientos que requieran un trabajo complementario de repaso.

NOTA ACLARATORIA: Los alumnos que estén cursando a la vez asignaturas que se impartan dentro de la misma franja horaria lectiva, tienen la obligación de asistir a la asignatura de nueva matrícula a la vez que asumen la responsabilidad de llevar al día las tareas previstas para la otra asignatura.

PROGRAMACIÓN DE LA MATERIA:

Contenidos de la materia:

1 - TRACCIÓN Y COMPRESIÓN		
1.1 - Elasticidad		

- 1.2 Ley de Hooke
- 1.3 Diagrama de tracción
- 1.4 Tensión de trabajo o tensión admisible, factores de seguridad
- 1.5 Tensión producida en una barra por su propio peso
- 1.6 Problemas estáticamente indeterminados en tracción y compresión
- 1.7 Energía de deformación elástica e inelástica

2 - TENSIONES Y DEFORMACIONES

- 2.1 Variación de la tensión en la tracción y compresión simple en secciones oblicuas al eje de la barra
- 2.2 El círculo de Mohr
- 2.3 Tracción y compresión en dos direcciones perpendiculares
- 2.4 Tensiones principales
- 2.5 Coeficiente de Poisson
- 2.6 Tensión cortante pura

3 - ESFUERZO CORTANTE Y MOMENTO FLECTOR

- 3.1 Tipos de apoyos, vigas, cargas y reacciones
- 3.2 Ecuaciones de la Estática, estructuras isostáticas, cálculo de reacciones
- 3.3 Esfuerzo cortante y momento flector: diagramas
- 3.4 Relación entre cargas, esfuerzos cortantes y momentos flectores

4 - TENSIONES EN VIGAS

- 4.1 Flexión pura y flexión no uniforme
- 4.2 Curvatura de una viga
- 4.3 Distribución de tensiones en una sección por flexión pura
- 4.4 Diseño de vigas para tensiones de flexión
- 4.5 Distribución de tensiones en una sección transversal por flexión no uniforme
- 4.6 Deformaciones lineales longitudinales en vigas

5 - DEFLEXIONES EN VIGAS

- 5.1 Ecuaciones diferenciales de la elástica
- 5.2 Deflexiones por integración del momento flector
- 5.3 Método de la viga conjugada
- 5.4 Método de superposición

Rev.003 FI-010 - 2 -

5.5 - Método área-momento. Teoremas de Mohr
6 - VIGAS ESTÁTICAMENTE INDETERMINADAS
6.1 - Tipos de apoyos (Vinculaciones)
6.2 - Vigas isostáticas e hiperestáticas
6.3 - Casos de vigas hiperestáticas
6.4 - Análisis de vigas hiperestáticas con las ecuaciones diferenciales
6.5 - Método de superposición
6.6 - Vigas continuas. Teorema de los tres momentos

La planificación de la asignatura podrá verse modificada por motivos imprevistos (rendimiento del grupo, disponibilidad de recursos, modificaciones en el calendario académico, etc.) y por tanto no deberá considerarse como definitiva y cerrada.

METODOLOGÍAS Y ACTIVIDADES DE ENSEÑANZA Y APRENDIZAJE:

Metodologías de enseñanza-aprendizaje a desarrollar:

Se aplicarán diferentes metodologías en función del tipo de actividad docente orientándose generalmente a la resolución de ejercicios prácticos y a la comprensión de conceptos teóricos. Se utilizarán diferentes medios para valorar la participación en las clases y el aprovechamiento de las mismas: supervisión de la realización de ejercicios, recogida de respuestas escritas, respuestas orales a cuestiones planteadas, etc.

- Clases presenciales teóricas: Clase teórica de transmisión de contenidos a través de la reflexión razonada con los alumnos con el apoyo de las TIC (utilización de pizarra, ordenador, proyector) resolviendo las dudas que surjan durante la sesión.
- Clases presenciales prácticas: El profesor guiará a los alumnos, agrupados convenientemente, en la resolución de las prácticas planteadas cada semana, resolviendo las dudas que surjan durante la sesión.
- Resolución colectiva de los trabajos prácticos planteados: El profesor detallará el proceso de resolución subrayando los puntos más importantes y aquellos en los que aprecie mas dificultades en los alumnos.
- Sesiones de tutoría: Durante estas sesiones, el estudiante podrá plantear al profesor, tanto de forma presencial, como a través de la plataforma virtual, todas aquellas dudas que no hayan podido ser solucionadas durante las clases presenciales.
- Trabajo personal: El alumno utilizará diferentes fuentes de información (apuntes, libros de referencia...), orientándose especialmente a la comprensión y repaso de los conceptos teóricos y a la resolución de problemas.
- Realización de pruebas escritas: Con ellas el profesor verificará la adquisición de los objetivos de aprendizaje del módulo, así como la adecuada progresividad en su asimilación.

Los estudiantes deben asistir a las actividades presenciales y tomar las orientaciones que se deriven de las clases magistrales, preparar las actividades prácticas previas a la realización de las clases y estudiar continuamente para conseguir el cumplimiento de objetivos de aprendizaje. Éstos se evaluarán de forma continua y sistemática a lo largo del cuatrimestre. El estudiante es responsable de planificar adecuadamente su trabajo atendiendo a las indicaciones de la presente guía docente y a las orientaciones que reciba del profesor; así como de esclarecer las dudas que surjan del estudio en cualquiera de sus formas. Se insiste además en la conveniencia de asistir a las actividades que organice Cesuga para lograr una formación avanzada.

Volumen de trabajo del alumno:

Modalidad organizativa	Métodos de enseñanza	Horas estimadas
Actividades Presenciales	Clase magistral	9
	Otras actividades teóricas	3
	Casos prácticos	4
	Resolución de prácticas, problemas, ejercicios etc.	10
	Otras actividades prácticas	2
	Actividades de evaluación	4

FI-010 - 3 - Rev.003

	Asistencia a actividades externas (visitas, conferencias, etc.)	2
	Asistencia a tutorías	4
	Estudio individual	14
Trabajo Autónomo	Preparación de trabajos individuales	18
	Tareas de investigación y búsqueda de información	3
	Otras actividades de trabajo autónomo	2
	Horas totales:	75

SISTEMA DE EVALUACIÓN:

Obtención de la nota final:

Pruebas escritas:	20	%
Prueba final:	50	%
Cuaderno de ejercicios:	30	%
TOTAL	100	%

^{*}Las observaciones específicas sobre el sistema de evaluación serán comunicadas por escrito a los alumnos al inicio de la materia.

BIBLIOGRAFÍA Y DOCUMENTACIÓN:

Bibliografía básica:

GERE, James M. Timoshenko: Resistencia de Materiales. Thomson, 2006. GORDON, John Edward. Estructuras o por qué las cosas no se caen. Calamar Ediciones, 2006.

Bibliografía recomendada:

BEER, Ferdinand P. Mecánica de Materiales. Mc. Graw-Hill, 2007.

MATTHYS, Levy. Why buildings fall down. Norton, 2002.

NASH, William A. Teoría y Problemas de Resistencia de Materiales. Schaum, Mc. Graw-Hill, 1992.

ORTIZ BERROCAL, L. Resistencia de materiales. McGraw Hill, 2007.

SALVADORI, Mario. Why Buildings Stand Up: Strength of Architecture from the Pyramids to theSkyscraper. Norton, 2002.

Páginas web recomendadas:

Área Tecnología - Estructuras	http://www.areatecnologia.com/estructuras.htm
Plataforma Arquitectura	http://www.plataformaarquitectura.cl/
Scalae	http://www.scalae.net/
Tectonica	http://www.tectonica.es/index.htm
Tectónica Blog	http://tectonicablog.com

FI-010 - 4 - Rev.003